Tetrahedron Letters, Vol.25, No.37, pp 4137-4138, 1984 0040-4039/84 \$3.00 + .00 Printed in Great Britain ©1984 Pergamon Press Ltd.

ELECTROCHEMICAL PROCEDURE DIRECTED TO THE SELECTIVE

RING OPENING OF EPOXIDES TO ALLYLIC ALCOHOLS

Kenji Uneyama, Noriyuki Nisiyama, and Sigeru Torii*

Department of Industrial Chemistry, School of Engineering, Okayama University, Okayama, Japan

Summary: A transformation of epoxides 2 into allylic alcohols 1 was achieved by an electrogenerated acid-catalysis in a ClCH₂CH₂Cl - TsONa - TsONEt₄ - Pt system.

Allylic alcohols $\underline{1}$ are useful synthetic intermediates for terpenoids. Many attempts on the transformation of $\underline{2}$ into $\underline{1}$ have been made by a base-catalyzed 1,2-elimination with LiNR₂,¹ and t-BuOK,² and by specially deviced Lewis acid-type catalysts with aluminium (DATMP),³ boron (9-BBNOTf),⁴ silicon (TMSOTf),⁵ and titanium [Ti(O-i-Pr)₄].⁶ The use of Al₂O₃,^{6,7} Li₃PO₄,⁸ and H₂SO₄⁹ has also been proposed although the yield of $\underline{1}$ is not necessarily satisfactory. Meanwhile, the conventional acid-catalyzed reaction of $\underline{2}$ mostly leads to the predominant formation of ketones $\underline{3}$ rather than $\underline{1}$. We have deviced an electrochemical method specifically directed to the selective transformation ($\underline{2} \rightarrow \underline{1}$) in a C1CH₂CH₂Cl-TsONa-TsONEt₄-Pt system.

A typical electrolysis procedure is as follows; A solution of TsONa (0.5 mmol), TsONEt₄ (0.6 mmol) in a distilled $ClCH_2CH_2CI$ (DCE) (40 ml) was electrolyzed using Pt foil electrodes (1.5 x 2 cm²) (2.7 mA/cm², for 2 h, 0.3 F/mol). Then 2a (524 mg, 2 mmol) was added to the electrolyzed solution and was allowed to react at room temperature for 1 h, and electrolyzed again (1 h, 0.15 F/mol) and stirred for additional 4 h, affording 1a (74%) and ketone 3a (7%) along with recovered 2a (13%). On the other hand, the reaction of 2a with TsOH gave 1a (53%) and 3a (47%), while BF₃ etherate led to exclusive formation of 3a (77%). Trisubstituted epoxides 2a - 2f provided 1a - 1f in reasonable yields. Epoxide of pulegone gave the allylic alcohols 4, a precursor of menthofuran, in 78% yield.

Electrolyte intensively affects the reaction pathway. The use of tosylate ion in DCE is essential for the selective transformation $(\underline{2} \rightarrow \underline{1})$. Thus, a DCE-TSONa-TSONEt₄-Pt system exclusively leads to the desired alcohol $\underline{1a}$ (74%), while a DCE-TSONEt₄-Pt (65%). However, perchlorates and LiBF₄ in DCE promoted the preferencial formation of $\underline{3a}$ rather than $\underline{1a}$;

[$\frac{1}{2}$ and $\frac{3}{2}$ (%): 2% and 91% (LiClO₄), 6% and 90% (NaClO₄), 3% and 87% (Et₄NClO₄), 28% and 50% (LiBF₄)]. The use of Et₄NBr resulted in a recovery of $\frac{2}{2}$. In contrast to the facile conversion ($\frac{2}{2} \rightarrow \frac{1}{2}$) with TsONa in DCE, the reaction proceeded slowly and gave moderate yields of $\frac{1}{2}$ in THF-DCE (48%), AcOEt-DCE (50%), and MeCN (53%), while the use of MeOH resulted in a recovery of $\frac{2}{2}$.

The ring opening of epoxides $\underline{2}$ would be initiated by the electrogenerated acid-catalyst.¹⁰ The incipient carbenium ion would be bonded or tightly ion-paired with tosylate anion in nonpolar solvent like DCE and subsequently converted to $\underline{1}$ <u>via</u> elimination as shown in $\underline{5}$. In fact, the tosylate (8%) from $\underline{2a}$ was isolated in the low temperature reaction (5 °C). Therefore, in contrast to the successful transformation of acyclic epoxides, epoxides of cyclic olefins such as limonene (products <u>6a</u> - <u>6c</u>) and α -pinene (products 7 and 8) yielded scarcely the desired alcohols $\underline{1}$ because of the unfavorable conformation of $\underline{5}$ for the elimination.¹¹

References

- 1) J. K. Whitesell and P. D. White, Synthesis, 602 (1975).
- 2) C. C. Price and D. D. Carmelite, J. Am. Chem. Soc., 88, 4039 (1966).
- A. Yasuda, S. Tanabe, K. Oshima, H. Yamamoto, and H. Nozaki, J. Am. Chem. Soc., <u>96</u>, 6513 (1974).
- 4) T. Inoue, T. Uchimaru, and T. Mukaiyama, Chem. Lett., 1215 (1977).
- 5) S. Murata, M. Suzuki, and R. Noyori, J. Am. Chem. Soc., <u>101</u>, 2738 (1979).
- 6) S. P. Tanis and P. M. Herrinton, J. Org. Chem., <u>48</u>, 4572 (1983).
- 7) K. Arata and K. Tanabe, Chem. Lett., 321 (1976).
- 8) M. N. Sheng, Synthesis, 194 (1972).
- 9) A. van Zon and R. Huis, J. R. Neth. Chem. Rec., 100, 425 (1981).
- K. Uneyama, A. Isimura, K. Fujii, and S. Torii, Tetrahedron Lett., <u>24</u>, 2857 (1983);
 S. Torii and T. Inokuchi, Chem. Lett., 1349 (1983).
- The reaction of epoxide of α-pinene with TMSOTf gave trans carveol (72%) as a major product.
 S. Murata, M. Suzuki, and R. Noyori, Bull. Chem. Soc. Jpn., <u>55</u>, 247 (1982).

(Received in Japan 4 June 1984)